Сфера наукових зацікавлень
Колоїди, поверхневі дослідження, двошарова електрична структура, колоїдна стійкість, флокуляція полімерами, адсорбція та колоїдна стабільність полімерів, флокуляція суспензій клітин, електрофорез, суспензія вуглецевих нанотрубок, коагуляція гідролізом солей, адсорбція важких металів, обробка води.
Публікації

(Scopus és Web of Science (WOS) besorolású publikációi)

  1. Balog, R., Simon, V., Manilo, M., Vanyorek, L., Csoma, Z., & Barany, S. (2020). Comparative study of Ni(II) and Cu(II) adsorption by as-prepared and oxidized multi-walled N-doped carbon nanotubes. Nanosistemi, Nanomateriali, Nanotehnologii, 18(2), 283–298.
  2. Balog, R., Manilo, M., Vanyorek, L., Csoma, Z., & Barany, S. (2020). Comparative study of Ni(ii) adsorption by pristine and oxidized multi-walled N-doped carbon nanotubes. RSC ADVANCES, 10(6), 3184–3191. http://doi.org/10.1039/C9RA09755D
  3. Manilo, M. V., Lebovka, N. I., & Barany, S. (2020). Electrokinetic Behavior of Laponite RD in Aqueous Suspensions Containing Poly(ethylene oxide) and Cetyltrimethylammonium Bromide. JOURNAL OF PHYSICAL CHEMISTRY B, 124(21), 4372–4378. http://doi.org/10.1021/acs.jpcb.0c02782
  4. Mészáros, R., Jobbik, A., Varga, G., & Bárány, S. (2019). Electrosurface properties of Na-bentonite particles in electrolytes and surfactants solution. APPLIED CLAY SCIENCE, 178. http://doi.org/10.1016/j.clay.2019.105127
  5. Szalai J., A., Kaptay, G., & Barany, S. (2019). Electrokinetic Potential and Size Distribution of Magnetite Nanoparticles Stabilized by Poly(vinyl Pyrrolidone). KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES, 81(6), 773–778. http://doi.org/10.1134/S1061933X20010020
  6. Manilo, M., Bohacs, K., Lebovka, N., & Barany, S. (2018). Impact of surfactant and clay platelets on electrokinetic potential and size distribution in carbon nanotubes aqueous suspensions. COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 544, 205–212. http://doi.org/10.1016/j.colsurfa.2018.02.030
  7. Maryna, M., Nikolai, L., & Sándor, B. (2017). Combined effect of cetyltrimethylammonium bromide and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. JOURNAL OF MOLECULAR LIQUIDS, 235, 104–110. http://doi.org/10.1016/j.molliq.2017.01.090
  8. M, Manilo ; P, Boltovets ; B, Snopok ; S, Barany ; N, Lebovka (2017). Anomalous interfacial architecture in laponite aqueous suspensions on a gold surface. COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 520, 883–891. http://doi.org/10.1016/j.colsurfa.2017.02.059
  9. Maryana, M., Csoma, Z. Z., & Barany, S. (2017). Comparative study of Cr(III) adsorption by carbon nanotubes and active carbons. KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES, 79(2), 212–218. http://doi.org/10.1134/S1061933X17020053
  10. Maryana, M., Nikolai, L., & Sandor, B. (2016). Mechanism of Methylene Blue adsorption on hybrid laponite-milti-walled carbon nanotube particles. JOURNAL OF ENVIRONMENTAL SCIENCES, 42, 134–141. http://doi.org/10.1016/j.jes.2015.06.011
  11. M, Manilo, Netreba S, Prokopenko V, Lebovka N, and Barany S. 2016. “Overcharging of Magnetite Nanoparticles in Electrolytes Solution.” COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS 506: 291–297. doi:10.1016/j.colsurfa.2016.06.047.
  12. S, Barany, Bohacs K, Chepurna I, and Meszaros R. 2016. “Electrokinetic Properties and Stability of Cerium Dioxide Suspensions.” RSC ADVANCES 6 (73): 69343–69351. doi:10.1039/C6RA12725H.
  13. Barany, Sandor. 2015. “Polymer Adsorption and Electrokinetic Potential of Dispersed Particles in Weak and Strong Electric Fields.” ADVANCES IN COLLOID AND INTERFACE SCIENCE 222: 58–69. doi:10.1016/j.cis.2014.09.009.
  14. Manilo, M, N Lebovka, and S Barany. 2015. “Stability of Multi-Walled Carbon Nanotube+laponite Partiles in Aqueous Suspensions.” COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS 481: 199–206. doi:10.1016/j.colsurfa.2015.04.052.
  15. R, Taubaeva, Meszaros R, Musabekov K, and Barany S. 2015. “Electrokinetic Potential and Flocculation of Bentonite Suspensions in Solutions of Surfactants, Polyelectrolytes and Their Mixtures.” KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES 77 (1): 91–98. doi:10.1134/S1061933X14060179.
  16. S, Barany, Meszaros R, Taubaeva R, and Musabekov K. 2015. “Electrosurface Properties of Kaolin and Bentonite Particles in Solutions of Electrolytes and Surfactants.” KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES 77 (6): 692–697. doi:10.1134/S1061933X15060046.
  17. Maryna, Manilo, Lebovka Nikolai, and Barany Sandor. 2014. “Characterization of the Electric Double Layers of Multi-Walled Carbon Nanotubes, Laponite and Nanotube + Laponite Hybrids in Aqueous Suspensions.” COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS 462: 211–216. doi:10.1016/j.colsurfa.2014.09.006.
  18. S, Barany, Kartel N, and Meszaros R. 2014. “Electrokinetic Potential of Multilayer Carbon Nanotubes in Aqueous Solutions of Electrolytes and Surfactants.” KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES 76 (5): 509–513. doi:10.1134/S1061933X14050020.
  19. Vanyorek, László, Renáta Mészáros, and Sándor Bárány. 2014. “Surface and Electrosurface Characterization of Surface-Oxidized Multi-Walled N-Doped Carbon Nanotubes.” COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS 448: 140–146. doi:10.1016/j.colsurfa.2014.01.078.
  20. Sandor, Barany, and Strelko Vladimir. 2013. “Laws and Mechanism of Adsorption of Cations by Different Ion-Exchange Forms of Silica Gel.” ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY 19 (2–4): 769–776. doi:10.1007/s10450-013-9516-5.
  21. Barany, S, M Nagy, and J Skvarla. 2012. “Electrokinetic Potential of Polystyrene Latices in Polyelectrolyte and Polyelectrolyte Mixtures Solutions.” COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS 413: 200–207. doi:10.1016/j.colsurfa.2012.03.001.
  22. Bárány, S, R Meszaros, L Marcinova, and J Skvarla. 2011. “Effect of Polyelectrolyte Mixtures on the Electrokinetic Potential and Kinetics of Flocculation of Clay Mineral Particles.” COLLOIDS AND SURFACES A : PHYSICOCHEMICAL AND ENGINEERING ASPECTS 383 (1–3): 48–55. doi:10.1016/j.colsurfa.2011.01.051.
  23. Gregory, J, and S Barany. 2011. “Adsorption and Flocculation by Polymers and Polymer Mixtures.” ADVANCES IN COLLOID AND INTERFACE SCIENCE 169 (1): 1–12. doi:10.1016/j.cis.2011.06.004.
  24. Barany, S, I Kozakova, L Marcinova, and J Skvarla. 2010. “Electrokinetic Potential of Bentonite and Kaolin Particles in the Presence of Polymer Mixtures.” KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES 72 (5): 595–601. doi:10.1134/S1061933X10050030.
  25. Meszaros, R, S Barany, and I Solomentseva. 2010. “Effect of Hydrodynamic Conditions on the Kinetics of Bentonite Suspension Flocculation by Cationic Polyelectrolytes and the Strength of Formed Flocs.” KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES 72 (3): 409–416. doi:10.1134/S1061933X10030154.
  26. Barany, S. 2009. “Electrophoresis in Strong Electric Fields.” ADVANCES IN COLLOID AND INTERFACE SCIENCE 147–48 (C): 36–43. doi:10.1016/j.cis.2008.10.006.
  27. Barany, S, R Meszaros, I Kozakova, and I Skvarla. 2009. “Kinetics and Mechanism of Flocculation of Bentonite and Kaolin Suspensions with Polyelectrolytes and the Strength of Floccs.” KOLLOIDNYI ZHURNAL / COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES 71 (3): 285–292. doi:10.1134/S1061933X09030016.
  28. R, Mészáros, and Bárány S. 2008. “Strength of Flocs Formed from Aluminium Sulfate Hydrolysis Product Particles.” PROGRESS IN COLLOID AND POLYMER SCIENCE 135: 70–76. doi:10.1007/2882-2008-107.

Головні публікації за останні 5 років:

  1. Manilo, M., Mészáros, R., Lebovka, N., & Bárány, S. (2020a). Liofil és liofób kolloidok diszperziók elektromos felületi tulajdonságai: a liotróp sorok érvényessége. MAGYAR KÉMIAI FOLYÓIRAT – KÉMIAI KÖZLEMÉNYEK (1997-), 126(1), 35–39. http://doi.org/10.24100/MKF.2020.01.35
  2. Manilo, M., Mészáros, R., Lebovka, N., & Bárány, S. (2020b). Liofil és liofób kolloidok diszperziók elektromos felületi tulajdonságai: a liotróp sorok érvényessége. MAGYAR KÉMIAI FOLYÓIRAT – KÉMIAI KÖZLEMÉNYEK (1997-), 126(1), 27–34. http://doi.org/10.24100/MKF.2020.01.27
  3. Manilo, M. V., Lebovka, N. I., & Barany, S. (2020). Electrokinetic Behavior of Laponite RD in Aqueous Suspensions Containing Poly(ethylene oxide) and Cetyltrimethylammonium Bromide. JOURNAL OF PHYSICAL CHEMISTRY B, 124(21), 4372–4378. http://doi.org/10.1021/acs.jpcb.0c02782
  4. O. Dudarko, S. Barany: Synthesis and characterization of sulfur-containing hybrid materials based on sodiusilicate. RSC Advances, 8 (2018) 37441-450 (Q1 in “Chemistry”).
  5. M.Manilo, K.Bohacs, N. Lebovka, S.Barany: Impact of surfactants and clay platelets on electrokinetic potential and size distribution in carbon nanotubes suspensions, Colloids a. Surf. A, 544(2018) 201-212 (Q2 in “Colloid a. Surface Chemistry”).
  6. M.Manilo, N. Lebovka, S. Barany: Combined effect of CTAB and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J. Molecular Liquids. 235 (2017) 104-110 (Q1).
  7. S. Barany, K.Bohach, I.Chepurna, R. Meszaros: Electrokinetic properties and stability of cerium dioxide suspensions. RSC Advances, 6 (2016) 69343-351 (Q1 in “Chemistry”).
  8. Bárány, S., Manilo, M., & Szalai, A. (2016). Többfalú szén nanocsövek elektrokinetikai potenciálja és szuszpenzióinak állandósága elektrolit oldatokban. MAGYAR KÉMIAI FOLYÓIRAT – KÉMIAI KÖZLEMÉNYEK (1997-), 122(1), 13–18.